Affiliation:
1. Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
2. Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 P. R. China
Abstract
AbstractGeometry and angles play crucial roles in cellular processes; however, its mechanisms of regulation remain unclear. In this study, a series of three dimensional (3D)‐printed microfibers with different geometries is constructed using a near‐field electrostatic printing technique to investigate the regulatory mechanisms of geometry on stem cell function and bone regeneration. The scaffolds precisely mimicked cell dimensions with high porosity and interoperability. Compared with other spatial topography angles, microfibers with a 90° topology can significantly promote the expression of osteogenic gene proteins in bone marrow‐derived mesenchymal stem cells (BMSCs). The effects of different spatial structures on the expression profiles of BMSCs differentiation genes are correlated and validated using microRNA sequencing. Enrichment analysis shows that the 90° microfibers promoted osteogenesis in BMSCs by significantly upregulating miR‐222‐5p/cbfb/Runx2 expression. The ability of the geometric architecture to promote bone regeneration, as assessed using the cranial defect model, demonstrates that the 90° fiber scaffolds significantly promote new bone regeneration and neovascular neural network formation. This study is the first to elucidate the relationship between angular geometry and cellular gene expression, contributing significantly to the understanding of how geometric architecture can promote stem cell differentiation, proliferation, and function for structural bone regeneration.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Shanghai Municipal Health Commission
Program of Shanghai Academic Research Leader
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献