Phase Segregation in PdCu Alloy Nanoparticles During CO Oxidation Reaction at Atmospheric Pressure

Author:

Jiang Yingying12,Lim Alvin M. H.3,Yan Hongwei12,Zeng Hua Chun3,Mirsaidov Utkur1245ORCID

Affiliation:

1. Department of Physics National University of Singapore Singapore 117551 Singapore

2. Centre for BioImaging Sciences Department of Biological Sciences National University of Singapore Singapore 117557 Singapore

3. Department of Chemical and Biomolecular Engineering College of Design and Engineering National University of Singapore Singapore 119260 Singapore

4. Centre for Advanced 2D Materials and Graphene Research Centre National University of Singapore Singapore 117546 Singapore

5. Department of Materials Science and Engineering National University of Singapore Singapore 117575 Singapore

Abstract

AbstractBimetallic nanoparticle (NP) catalysts are widely used in many heterogeneous gas‐based reactions because they often outperform their monometallic counterparts. During these reactions, NPs often undergo structural changes, which impact their catalytic activity. Despite the important role of the structure in the catalytic activity, many aspects of how a reactive gaseous environment affects the structure of bimetallic nanocatalysts are still lacking. Here, using gas‐cell transmission electron microscopy (TEM), it is shown that during a CO oxidation reaction over PdCu alloy NPs, the selective oxidation of Cu causes the segregation of Cu and transforms the NPs into Pd–CuO NPs. The segregated NPs are very stable and have high activity for the conversion of CO into CO2. Based on the observations, the segregation of Cu from Cu‐based alloys during a redox reaction is likely to be general and may have a positive impact on the catalytic activity. Hence, it is believed that similar insights based on direct observation of the reactions under relevant reactive conditions are critical both for understanding and designing high‐performance catalysts.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3