A High‐Entropy Oxyhydroxide with a Graded Metal Network Structure for Efficient and Robust Alkaline Overall Water Splitting

Author:

Zhang Chen‐Xu12,Yin Di2,Zhang Yu‐Xuan2,Sun Yu‐Xiang1,Zhao Xiao‐Jin1,Liao Wu‐Gang1,Ho Johnny C.234ORCID

Affiliation:

1. State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University) College of Electronics and Information Engineering Shenzhen 518060 China

2. Department of Materials Science and Engineering City University of Hong Kong Hong Kong SAR 999077 P. R. China

3. State Key Laboratory of Terahertz and Millimeter Waves City University of Hong Kong Hong Kong SAR 999077 P. R. China

4. Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 816‐8580 Japan

Abstract

AbstractDesigning high‐entropy oxyhydroxides (HEOs) electrocatalysts with controlled nanostructures is vital for efficient and stable water‐splitting electrocatalysts. Herein, a novel HEOs material (FeCoNiWCuOOH@Cu) containing five non‐noble metal elements derived by electrodeposition on a 3D double‐continuous porous Cu support is created. This support, prepared via the liquid metal dealloying method, offers a high specific surface area and rapid mass/charge transfer channels. The resulting high‐entropy FeCoNiWCuOOH nanosheets provide a dense distribution of active sites. The heterostructure between Cu skeletons and FeCoNiWCuOOH nanosheets enhances mass transfer, electronic structure coupling, and overall structural stability, leading to excellent activities in the oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and water splitting reaction. At 10 mA cm−2, the overpotentials for OER, HER, and water splitting in 1.0 m KOH solution are 200, 18, and 1.40 V, respectively, outperforming most current electrocatalysts. The catalytic performance remains stable even after operating at 300 mA cm−2 for 100, 100, and over 1000 h, correspondingly. This material has potential applications in integrated hydrogen energy systems. More importantly, density functional theory (DFT) calculations demonstrate the synergy of the five elements in enhancing water‐splitting activity. This work offers valuable insights for designing industrial water electrolysis systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3