Recycled, Contaminated, Crumpled Aluminum Foil‐Driven Triboelectric Nanogenerator

Author:

Son Jin‐ho1,Cha Kyunghwan1,Chung Seh‐Hoon1,Heo Deokjae1,Kim Sunghan1,Choi Moonhyun2,Park In Soo3,Hong Jinkee4,Lee Sangmin1ORCID

Affiliation:

1. School of Mechanical Engineering Chung‐Ang University 84, Heukseok‐ro, Dongjak‐gu Seoul 06974 Republic of Korea

2. Center for Systems Biology Massachusetts General Hospital Boston Massachusetts 02114 USA

3. LS Materials LSMtron Hi‐Tech Center 39, LS‐ro, 116‐gil, Dongan‐gu Anyang‐si Gyeonggi‐do 14118 Republic of Korea

4. Department of Chemical & Biomolecular Engineering College of Engineering Yonsei University 50 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea

Abstract

AbstractWith rapid urbanization and global population growth, the amount of wasted aluminum foil is significantly increasing. Most deformed and contaminated foil is difficult to recycle; hence, it is landfilled or incinerated, causing environmental pollution. Therefore, using aluminum foil waste for electricity may be conducive to addressing environmental problems. In this regard, various literatures have explored the concept of energy generation using foil, while a crumple ball design for this purpose has not been studied. Thus, a recycled foil‐based crumpled ball triboelectric nanogenerator (RFCB‐TENG) is proposed. The crumpled ball design can minimize the effects of contamination on foil, ensuring efficient power output. Moreover, owing to novel crumpled design, the RFCB‐TENG has some outstanding characteristics to become a sustainable power source, such as ultralight weight, low noise, and high durability. By introducing the air‐breakdown model, the RFCB‐TENG achieved an output peak voltage of 648 V, a current of 8.1 mA cm3, and an optimum power of 162.7 mW cm3. The structure of the RFCB‐TENG is systemically optimized depending on the design parameters to realize the optimum output performance. Finally, the RFCB‐TENG operated 500 LEDs and 30‐W commercial lamps. This work paves the guideline for effectively fabricating the TENG using waste‐materials while exhibiting outstanding characteristics.

Funder

National Research Foundation of Korea

Ministry of Trade, Industry and Energy

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3