Poor Cycling Performance of Rechargeable Lithium–Oxygen Batteries under Lean‐Electrolyte and High‐Areal‐Capacity Conditions: Role of Carbon Electrode Decomposition

Author:

Ono Manai1,Saengkaew Jittraporn1,Matsuda Shoichi12ORCID

Affiliation:

1. Center for Green Research on Energy and Environmental Materials National Institute for Material Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan

2. NIMS‐SoftBank Advanced Technologies Development Center National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan

Abstract

AbstractThere is growing demand for practical implementation of lithium–oxygen batteries (LOBs) due to their superior potential for achieving higher energy density than that of conventional lithium‐ion batteries. Although recent studies demonstrate the stable operation of 500 Wh kg−1‐class LOBs, their cycle life remains fancy. For further improving the cycle performance of LOBs, the complicated chemical degradation mechanism in LOBs must be elucidated. In particular, the quantitative contribution of each cell component to degradation phenomenon in LOBs under lean‐electrolyte and high‐areal‐capacity conditions should be clarified. In the present study, the mass balance of the positive‐electrode reaction in a LOB under lean‐electrolyte and high‐areal‐capacity conditions is quantitatively evaluated. The results reveal carbon electrode decomposition to be the critical factor that prevents the prolonged cycling of the LOB. Notably, the carbon electrode decomposition occur during charging at voltages higher than 3.8 V through the electrochemical decomposition of solid‐state side products. The findings of this study highlight the significance of improving the stability of the carbon electrode and/or forming Li2O2, which can decompose at voltages lower than 3.8 V, to realize high‐energy‐density LOBs with long cycle life.

Funder

Advanced Low Carbon Technology Research and Development Program

Japan Science and Technology Agency

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3