A Photomechanical Film in which Liquid Crystal Design Shifts the Absorption into the Visible Light Range

Author:

Schultzke Sven12ORCID,Scheuring Nikolai3,Puylaert Pim4ORCID,Lehmann Matthias3ORCID,Staubitz Anne12ORCID

Affiliation:

1. University of Bremen Institute for Analytical and Organic Chemistry Leobener Straße 7 D‐28359 Bremen Germany

2. University of Bremen MAPEX Center for Materials and Processes Bibliothekstraße 1 D‐28359 Bremen Germany

3. University of Würzburg Institute of Organic Chemistry Am Hubland D‐97074 Würzburg Germany

4. University of Bremen Institute for Inorganic Chemistry and Crystallography Leobener Straße 7 D‐28359‐ Bremen Germany

Abstract

AbstractLiquid crystalline polymer networks (LCN) with azobenzene monomers bend reversibly under UV‐light irradiation, combining photomechanical and photothermal effects. However, the harmful nature of UV‐light limits their use in biology and soft robotics. Although visible light‐absorbing tetra‐ortho‐fluoro‐substituted azobenzenes exist, liquid crystalline monomers have never been prepared. Previously, such azobenzenes were added as photoactive additives (up to 10%) to otherwise passive liquid crystalline polymer networks. In this work, a molecular design of a liquid crystalline, polymerizable azobenzene switchable by visible light is presented. The monomer assembles in a highly fluid nematic phase, but polymerizes in a layered smectic C phase. The films are produced solely from the monomer without additional liquid crystalline components and are actuated with visible light. Bending experiments in air and under water differentiate photomechanical and photothermal effects. Remarkably, a 60 µm splay aligned film maintains its deformation for hours, slowly reverting over days. Monomer liquid crystallinity is characterized using differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXS), and polarized optical microscopy (POM); polymer films are analyzed using WAXS and DSC on a homogeneously aligned film. The synthetic procedure is high yielding and polymer film fabrication is scalable, which enables the use of safe and efficient photomechanical LCNs in soft robotics, engineering and biology.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3