Structural Evolution of Bacterial Polyphosphate Degradation Enzyme for Phosphorus Cycling

Author:

Dai Shang12ORCID,Wang Binqiang134,Ye Rui5,Zhang Dong15,Xie Zhenming1,Yu Ning1,Cai Chunhui1,Huang Cheng1,Zhao Jie1,Zhang Furong1,Hua Yuejin16ORCID,Zhao Ye16ORCID,Zhou Ruhong1256ORCID,Tian Bing16ORCID

Affiliation:

1. Institute of Biophysics College of Life Sciences Zhejiang University Hangzhou 310029 China

2. Shanghai Institute for Advanced Study of Zhejiang University Shanghai 201203 China

3. State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou 310029 China

4. Zhejiang Baima Lake Laboratory Co., Ltd Hangzhou 310029 China

5. School of Physics Institute of Quantitative Biology Zhejiang University Hangzhou 310029 China

6. Cancer Center Zhejiang University Hangzhou 310029 China

Abstract

AbstractLiving organisms ranging from bacteria to animals have developed their own ways to accumulate and store phosphate during evolution, in particular as the polyphosphate (polyP) granules in bacteria. Degradation of polyP into phosphate is involved in phosphorus cycling, and exopolyphosphatase (PPX) is the key enzyme for polyP degradation in bacteria. Thus, understanding the structure basis of PPX is crucial to reveal the polyP degradation mechanism. Here, it is found that PPX structure varies in the length of ɑ‐helical interdomain linker (ɑ‐linker) across various bacteria, which is negatively correlated with their enzymatic activity and thermostability – those with shorter ɑ‐linkers demonstrate higher polyP degradation ability. Moreover, the artificial DrPPX mutants with shorter ɑ‐linker tend to have more compact pockets for polyP binding and stronger subunit interactions, as well as higher enzymatic efficiency (kcat/Km) than that of DrPPX wild type. In Deinococcus‐Thermus, the PPXs from thermophilic species possess a shorter ɑ‐linker and retain their catalytic ability at high temperatures (70 °C), which may facilitate the thermophilic species to utilize polyP in high‐temperature environments. These findings provide insights into the interdomain linker length‐dependent evolution of PPXs, which shed light on enzymatic adaption for phosphorus cycling during natural evolution and rational design of enzyme.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strategic Study for the Development of Space Life;Chinese Journal of Space Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3