Light‐Operated Transient Unilateral Adhesive Hydrogel for Comprehensive Prevention of Postoperative Adhesions

Author:

Cui Furong123,Shen Shihong123ORCID,Ma Xiaoxuan123,Fan Daidi123ORCID

Affiliation:

1. Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing Ministry of Education School of Chemical Engineering Northwest University Xi'an 710069 China

2. Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering School of Chemical Engineering Northwest University Xi'an 710069 China

3. Biotech. & Biomed. Research Institute Northwest University Xi'an 710069 China

Abstract

AbstractDislocation of anti‐adhesion materials, non‐specific tissue adhesion, and the induction of secondary fibrinolysis disorders are the main challenges faced by postoperative anti‐adhesion materials. Herein, a self‐leveling transient unilateral adhesive hydrogel is custom‐designed to conquer these challenges with a theoretically calculated and dual‐step tailored gellan gum (GG) as the sole agent. First, the maximum gelation temperature of GG is lowered from 42–25 °C through controlled perturbation of intra‐ and inter‐molecular hydrogen bonds, which is achieved by employing the methacrylic anhydride as a “hydrogen bond's perturbator” to form methacrylate GG (MeGG). Second, the “self‐leveling” injectability and wound shape adaptably are endowed by the formation of borate‐diol complexed MeGG (BMeGG). Finally, the transient unilateral tissue‐adhesive hydrogel (BMeGG‐H) barrier is prepared through photo‐controlled cross‐linking of reactive alkenyl groups. This degradable hydrogel demonstrates favorable rheological properties, light‐controlled unilateral adhesion properties, biocompatibility, anti‐fibrin adhesion, and anti‐cell adhesion properties in vitro. Comprehensive regulation of the fibrinolysis balance toward non‐adhesion is conformed in a rat model after intra‐abdominal surgery via anti‐autoinflammatory response, intestinal wall integrity repair, and Tissue plasminogen activator (t‐PA) and plasminogen activator inhibitor‐1 (PAI‐1) balance adjustment. Notably, the 14th day anti‐adhesion effective rate is 100%, indicating its significant potential in clinical applications for postoperative anti‐adhesion.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3