Formulating Electron Beam‐Induced Covalent Linkages for Stable and High‐Energy‐Density Silicon Microparticle Anode

Author:

Je Minjun1,Son Hye Bin1,Han Yu‐Jin2,Jang Hangeol23,Kim Sungho1,kim Dongjoo1,Kang Jieun1,Jeong Jin‐Hyeok4,Hwang Chihyun56,Song Gyujin12,Song Hyun‐Kon5,Ha Tae Sung4,Park Soojin1ORCID

Affiliation:

1. Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea

2. Ulsan Advanced Energy Technology R&D Center Korea Institute of Energy Research (KIER) Ulsan 44776 Republic of Korea

3. School of Materials Science and Engineering Pusan National University Busan 46241 Republic of Korea

4. GEV Eumseong 27733 Republic of Korea

5. School of Energy and Chemical Engineering Ulsan National Institute of Science & Technology (UNIST) Ulsan 44919 Republic of Korea

6. Advanced Batteries Research Center Korea Electronics Technology Institute (KETI) Gyeonggi‐do 13509 Republic of Korea

Abstract

AbstractHigh‐capacity silicon (Si) materials hold a position at the forefront of advanced lithium‐ion batteries. The inherent potential offers considerable advantages for substantially increasing the energy density in batteries, capable of maximizing the benefit by changing the paradigm from nano‐ to micron‐sized Si particles. Nevertheless, intrinsic structural instability remains a significant barrier to its practical application, especially for larger Si particles. Here, a covalently interconnected system is reported employing Si microparticles (5 µm) and a highly elastic gel polymer electrolyte (GPE) through electron beam irradiation. The integrated system mitigates the substantial volumetric expansion of pure Si, enhancing overall stability, while accelerating charge carrier kinetics due to the high ionic conductivity. Through the cost‐effective but practical approach of electron beam technology, the resulting 500 mAh‐pouch cell showed exceptional stability and high gravimetric/volumetric energy densities of 413 Wh kg−1, 1022 Wh L−1, highlighting the feasibility even in current battery production lines.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3