Alkali‐Metal–Assisted Green‐Solvent Synthesis for In Situ Growth of Perovskite Nanocrystals in Porous Materials

Author:

Wang Peijun123,Wang Bolun4,Li Nan2,He Tong5,Zhang Hao2,Zhang Lu2,Liu Shengzhong (Frank)123ORCID

Affiliation:

1. Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China

2. Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 China

3. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

4. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China

5. School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China

Abstract

AbstractInorganic metal halide perovskite CsPbX3 (X = I, Br, and Cl) nanocrystals (NCs) are rapidly developed due to their excellent photophysical properties and potential applications in lighting, lasers, and scintillators. However, the materials for growing perovskite NCs are insoluble or hydrolyzed in most green solvents, limiting their further development. Based on rational chemical analysis, an alkali‐metal–assisted green‐solvent synthesis method for in situ growth of CsPbBr3 NCs within SAPO‐34 zeolite with bright luminescence is developed. Water is the only solvent used in the whole process. Surprisingly, by the synergistic effect of the channel structure of SAPO‐34 and alkali‐metal ions crystallization regulation, the CsPbBr3 NCs embedded in SAPO‐34 assisted by Na+ emit bright blue light under ultraviolet illumination, with a 30 nm blue shift comparing to the CsPbBr3 NCs assisted by K+. Moreover, CsPbBr3 NCs can also be grown in mesoporous SiO2 SBA‐15 and zeolites including ZSM‐5, AlPO‐5, and SOD, indicating that the method is universal for in situ growth of luminescent perovskite NCs in porous materials. This alkali‐metal–assisted green‐solvent synthesis provides a new strategy for developing high‐quantum–yield, tunable‐emission, and stable perovskite luminescent materials.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3