Tunable Emissive CsPbBr3/Cs4PbBr6 Quantum Dots Engineered by Discrete Phase Transformation for Enhanced Photogating in Field‐Effect Phototransistors

Author:

Han Xiao1ORCID,Wan Siyuan1,He Lin1,Zou Junlong1,Mavric Andraz2,Wang Yixi3,Piotrowski Marek1,Bandela Anil Kumar4ORCID,Samorì Paolo5,Wang Zhiming1,Leydecker Tim1ORCID,Thumu Udayabhaskararao1ORCID

Affiliation:

1. Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China

2. Materials Research Laboratory University of Nova Gorica Vipavska 13 Nova Gorica SI‐5000 Slovenia

3. School of New Energy Materials and Chemistry Leshan Normal University Leshan Sichuan 614000 China

4. Department of Chemistry Ben Gurion University of the Negev Beer Sheva 84105 Israel

5. University of Strasbourg CNRS ISIS UMR 7006, 8 Allée Gaspard Monge Strasbourg 67000 France

Abstract

AbstractPrecise control of quantum structures in hybrid nanocrystals requires advancements in scientific methodologies. Here, on the design of tunable CsPbBr3/Cs4PbBr6 quantum dots are reported by developing a unique discrete phase transformation approach in Cs4PbBr6 nanocrystals. Unlike conventional hybrid systems that emit solely in the green region, this current strategy produces adjustable luminescence in the blue (450 nm), cyan (480 nm), and green (510 nm) regions with high photoluminescence quantum yields up to 45%, 60%, and 85%, respectively. Concentration‐dependent studies reveal that phase transformation mechanisms and the factors that drive CsBr removal occur at lower dilutions while the dissolution–recrystallization process dominates at higher dilutions. When the polymer‐CsPbBr3/Cs4PbBr6 integrated into a field‐effected transistor the resulting phototransistors featured enhanced photosensitivity exceeding 105, being the highest reported for an n‐type phototransistor, while maintaining good transistor performances as compared to devices consisting of polymer‐CsPbBr3 NCs.

Funder

National Natural Science Foundation of China

Chengdu Science and Technology Bureau

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3