Triple Cross‐linked Dynamic Responsive Hydrogel Loaded with Selenium Nanoparticles for Modulating the Inflammatory Microenvironment via PI3K/Akt/NF‐κB and MAPK Signaling Pathways

Author:

Wang Shuangqing123ORCID,Liu Yanhong12,Sun Qianwen12,Zeng Bowen12,Liu Chao12,Gong Liming12,Wu Hao123,Chen Liqing12,Jin Mingji12,Guo Jianpeng3,Gao Zhonggao123,Huang Wei12

Affiliation:

1. State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China

2. Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations Department of Pharmaceutics Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China

3. Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education College of Pharmacy Yanbian University Yanji Jilin Province 133002 China

Abstract

AbstractModulating the inflammatory microenvironment can inhibit the process of inflammatory diseases (IDs). A tri‐cross‐linked inflammatory microenvironment‐responsive hydrogel with ideal mechanical properties achieves triggerable and sustained drug delivery and regulates the inflammatory microenvironment. Here, this study develops an inflammatory microenvironment‐responsive hydrogel (OD‐PP@SeNPs) composed of phenylboronic acid grafted polylysine (PP), oxidized dextran (OD), and selenium nanoparticles (SeNPs). The introduction of SeNPs as initiators and nano‐fillers into the hydrogel results in extra cross‐linking of the polymer network through hydrogen bonding. Based on Schiff base bonds, Phenylboronate ester bonds, and hydrogen bonds, a reactive oxygen species (ROS)/pH dual responsive hydrogel with a triple‐network is achieved. The hydrogel has injectable, self‐healing, adhesion, outstanding flexibility, suitable swelling capacity, optimal biodegradability, excellent stimuli‐responsive active substance release performance, and prominent biocompatibility. Most importantly, the hydrogel with ROS scavenging and pH‐regulating ability protects cells from oxidative stress and induces macrophages into M2 polarization to reduce inflammatory cytokines through PI3K/AKT/NF‐κB and MAPK pathways, exerting anti‐inflammatory effects and reshaping the inflammatory microenvironment, thereby effectively treating typical IDs, including S. aureus infected wound and rheumatoid arthritis in rats. In conclusion, this dynamically responsive injectable hydrogel with a triple‐network structure provides an effective strategy to treat IDs, holding great promise in clinical application.

Funder

Jilin Provincial Scientific and Technological Development Program

Chinese Academy of Medical Sciences Initiative for Innovative Medicine

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3