The Balance Effect of π–π Electronic Coupling on NIR‐II Emission and Photodynamic Properties of Highly Hydrophobic Conjugated Photosensitizers

Author:

Zhu Yulin123,Lai Hanjian1,Gu Ying12,Wei Zixiang2,Chen Lin12,Lai Xue13,Han Liang12,Tan Pu1,Pu Mingrui1,Xiao Fan2,He Feng1ORCID,Tian Leilei2

Affiliation:

1. Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China

2. Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 China

3. School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China

Abstract

AbstractDeep NIR organic phototheranostic molecules generally have large π‐conjugation structures and show highly hydrophobic properties, thus, forming strong π–π stacking in the aqueous medium, which will affect the phototheranostic performance. Herein, an end‐group strategy is developed to lift the performance of NIR‐II emitting photosensitizers. Extensive characterizations reveal that the hydrogen‐bonding interactions of the hydroxyl end group can induce a more intense π–π electronic coupling than the chlorination‐mediated intermolecular forces. The results disclose that π–π stacking will lower fluorescence quantum yield but significantly benefit the photodynamic therapy (PDT) efficiency. Accordingly, an asymmetrically substituted derivative (BTIC‐δOH‐2Cl) is developed, which shows balanced phototheranostic properties with excellent PDT efficiency (14.6 folds of ICG) and high NIR‐II fluorescence yield (2.27%). It proves the validity of the end‐group strategy on controlling the π–π interactions and rational tuning the performance of NIR‐II organic phototheranostic agents.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3