Affiliation:
1. Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
2. CAS Center for Excellence in Topological Quantum Computation University of Chinese Academy of Sciences Beijing 100190 P. R. China
Abstract
AbstractGarnet‐type solid‐state electrolyte (SSE) Li6.5La3Zr1.5Ta0.5O12 attracts great interest due to its high ion conductivity and wide electrochemical window. But the huge interfacial resistance, Li dendrite growth, and low critical current density (CCD) block the practical applications. Herein, a superlithiophilic 3D burr‐microsphere (BM) interface layer composed of ionic conductor LiF‐LaF3 is constructed in situ to achieve a high‐rate and ultra‐stable solid‐state lithium metal battery. The 3D‐BM interface layer with a large specific surface area shows a superlithiophilicity and its contact angle with molten Li is only 7° enabling the facile infiltration of molten Li. The assembled symmetrical cell reaches one of the highest CCD (2.7 mA cm−2) at room temperature, an ultra‐low interface impedance of 3 Ω cm2, and a super‐long cycling stability of 12 000 h at 0.1–1.5 mA cm−2 without Li dendrite growth. The solid‐state full cells with 3D‐BM interface show outstanding cycling stability (LiFePO4: 85.4%@900 cycles@1 C; LiNi0.8Co0.1Mn0.1O2:89%@200 cycles@0.5 C) and a high rate capacity (LiFePO4:135.5mAh g−1 at 2 C). Moreover, the designed 3D‐BM interface is quite stable after 90 days of storage in the air. This study offers a facile strategy to address the critical interface issues and accelerate the practical application of garnet‐type SSE in high performance solid‐state lithium metal batteries.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
Natural Science Foundation of Beijing Municipality
Fundamental Research Funds for the Central Universities
China Postdoctoral Science Foundation
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献