Affiliation:
1. Key Laboratory of Advanced Functional Materials Education Ministry of China Faculty of Materials and Manufacturing Beijing University of Technology Beijing 100124 China
2. Institute of Information Photonics Technology Faculty of Science Beijing University of Technology Beijing 100124 China
3. Department of Engineering Mechanics Beijing University of Technology Beijing 100124 China
Abstract
AbstractOwing to high water content and homogeneous texture, conventional hydrogels hardly reach satisfactory mechanical performance. Tensile‐resistant groups and structural heterogeneity are employed to fabricate tough hydrogels. However, those techniques significantly increase the complexity and cost of material synthesis, and have only limited applicability. Here, it is shown that ultra‐tough hydrogels can be obtained via a unique hierarchical architecture composed of chemically coupled self‐assembly units. The associative energy dissipation among them may be rationally engineered to yield libraries of tough gels with self‐healing capability. Tunable tensile strength, fracture strain, and toughness of up to 19.6 MPa, 20 000%, and 135.7 MJ cm⁻3 are achieved, all of which exceed the best known records. The results demonstrate a universal strategy to prepare desired ultra‐tough hydrogels in predictable and controllable manners.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献