Affiliation:
1. Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department PLA General Hospital and PLA Medical College PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury Repair and Regeneration Research Unit of Trauma Care Tissue Repair and Regeneration Chinese Academy of Medical Sciences 2019RU051 Beijing 100048 P. R. China
2. Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
Abstract
AbstractThe scar repair inevitably causes damage of skin function and loss of skin appendages such as hair follicles (HF). It is of great challenge in wound repair that how to intervene in scar formation while simultaneously remodeling HF niche and inducing in situ HF regeneration. Here, chemical reprogramming techniques are used to identify a clinically chemical cocktail (Tideglusib and Tamibarotene) that can drive fibroblasts toward dermal papilla cell (DPC) fate. Considering the advantage of biomaterials in tissue repair and their regulation in cell behavior that may contributes to cellular reprogramming, the artificial HF seeding (AHFS) hydrogel microspheres, inspired by the natural processes of “seeding and harvest”, are constructed via using a combination of liposome nanoparticle drug delivery system, photoresponsive hydrogel shell, positively charged polyamide modification, microfluidic and photocrosslinking techniques. The identified chemical cocktail is as the core nucleus of AHFS. In vitro and in vivo studies show that AHFS can regulate fibroblast fate, induce fibroblast‐to‐DPC reprogramming by activating the PI3K/AKT pathway, finally promoting wound healing and in situ HF regeneration while inhibiting scar formation in a two‐pronged translational approach. In conclusion, AHFS provides a new and effective strategy for functional repair of skin wounds.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献