Novel Biomimetic “Spider Web” Robust, Super‐Contractile Liquid Crystal Elastomer Active Yarn Soft Actuator

Author:

Wu Dingsheng12,Li Xin1,Zhang Yuxin1,Cheng Xinyue1,Long Zhiwen1,Ren Lingyun1,Xia Xin3,Wang Qingqing1,Li Jie4,Lv Pengfei1,Feng Quan2,Wei Qufu1ORCID

Affiliation:

1. Key Laboratory of Eco‐Textiles, Ministry of Education Jiangnan University Jiangsu 214122 China

2. Key Laboratory of Textile Fabrics, College of Textiles and Clothing Anhui Polytechnic University Anhui 241000 China

3. College of Textile and Clothing Xinjiang University Urumchi Xinjiang 830046 China

4. Jiangsu Textile Quality Services Inspection Testing Institute Jiangsu 210007 China

Abstract

AbstractIn nature, spider web is an interwoven network with high stability and elasticity from silk threads secreted by spider. Inspired by the structure of spider webs, light‐driven liquid crystal elastomer (LCE) active yarn is designed with super‐contractile and robust weavability. Herein, a novel biomimetic gold nanorods (AuNRs) @LCE yarn soft actuator with hierarchical structure is fabricated by a facile electrospinning and subsequent photocrosslinking strategies. Meanwhile, the inherent mechanism and actuation performances of the as‐prepared yarn actuator with interleaving network are systematically analyzed. Results demonstrate that thanks to the unique “like‐spider webs” structure between fibers, high molecular orientation within the LCE microfibers and good flexibility, they can generate super actuation strain (≈81%) and stable actuation performances. Importantly, benefit from the robust covalent bonding at the organic–inorganic interface, photopolymerizable AuNRs molecules are uniformly introduced into the polymer backbone of electrospun LCE yarn to achieve tailorable shape‐morphing under different light intensity stimulation. As a proof‐of‐concept illustration, light‐driven artificial muscles, micro swimmers, and hemostatic bandages are successfully constructed. The research disclosed herein can offer new insights into continuous production and development of LCE‐derived yarn actuator that are of paramount significance for many applications from smart fabrics to flexible wearable devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3