Selective Ethylene Glycol Oxidation to Formate on Nickel Selenide with Simultaneous Evolution of Hydrogen

Author:

Li Junshan1ORCID,Li Luming12,Ma Xingyu3,Han Xu4,Xing Congcong5,Qi Xueqiang5,He Ren5,Arbiol Jordi46,Pan Huiyan7,Zhao Jun8,Deng Jie2,Zhang Yu59,Yang Yaoyue3ORCID,Cabot Andreu56ORCID

Affiliation:

1. Institute for Advanced Study Chengdu University Chengdu 610106 China

2. College of Food and Biological Engineering Chengdu University Chengdu 610106 China

3. School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China

4. Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST Campus UAB, Bellaterra Barcelona Catalonia 08193 Spain

5. Catalonia Institute for Energy Research—IREC Sant Adrià de Besòs Barcelona Catalonia 08930 Spain

6. ICREA Pg. Lluís Companys 23 Barcelona Catalonia 08910 Spain

7. School of Biological and Chemical Engineering Nanyang Institute of Science and Technology Nanyang 473004 China

8. Hebei Key Laboratory of Photoelectric Control on Surface and Interface College of Science Hebei University of Science and Technology Shijiazhuang 050018 China

9. Department of Materials Science and Engineering Pennsylvania State University University Park PA 16802 USA

Abstract

AbstractThere is an urgent need for cost‐effective strategies to produce hydrogen from renewable net‐zero carbon sources using renewable energies. In this context, the electrochemical hydrogen evolution reaction can be boosted by replacing the oxygen evolution reaction with the oxidation of small organic molecules, such as ethylene glycol (EG). EG is a particularly interesting organic liquid with two hydroxyl groups that can be transformed into a variety of C1 and C2 chemicals, depending on the catalyst and reaction conditions. Here, a catalyst is demonstrated for the selective EG oxidation reaction (EGOR) to formate on nickel selenide. The catalyst nanoparticle (NP) morphology and crystallographic phase are tuned to maximize its performance. The optimized NiS electrocatalyst requires just 1.395 V to drive a current density of 50 mA cm−2 in 1 m potassium hydroxide (KOH) and 1 m EG. A combination of in situ electrochemical infrared absorption spectroscopy (IRAS) to monitor the electrocatalytic process and ex situ analysis of the electrolyte composition shows the main EGOR product is formate, with a Faradaic efficiency above 80%. Additionally, C2 chemicals such as glycolate and oxalate are detected and quantified as minor products. Density functional theory (DFT) calculations of the reaction process show the glycol‐to‐oxalate pathway to be favored via the glycolate formation, where the CC bond is broken and further electro‐oxidized to formate.

Funder

Chengdu University

Ministerio de Ciencia e Innovación

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Southwest Minzu University

Generalitat de Catalunya

European Commission

Natural Science Foundation of Sichuan Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3