Ultrafast Metal‐Free Microsupercapacitor Arrays Directly Store Instantaneous High‐Voltage Electricity from Mechanical Energy Harvesters

Author:

Chen Shiqian1,Li Zheng1,Huang Po‐Han2,Ruiz Virginia3,Su Yingchun1,Fu Yujie1,Alesanco Yolanda3,Malm B. Gunnar1,Niklaus Frank2,Li Jiantong1ORCID

Affiliation:

1. KTH Royal Institute of Technology School of Electrical Engineering and Computer Science Division of Electronics and Embedded Systems Electrum 229 Kista 16440 Sweden

2. KTH Royal Institute of Technology School of Electrical Engineering and Computer Science Division of Micro and Nanosystems Stockholm SE‐100 44 Sweden

3. CIDETEC Basque Research and Technology Alliance (BRTA) Po. Miramón 196 Donostia‐San Sebastián 20014 Spain

Abstract

AbstractHarvesting renewable mechanical energy is envisioned as a promising and sustainable way for power generation. Many recent mechanical energy harvesters are able to produce instantaneous (pulsed) electricity with a high peak voltage of over 100 V. However, directly storing such irregular high‐voltage pulse electricity remains a great challenge. The use of extra power management components can boost storage efficiency but increase system complexity. Here utilizing the conducting polymer PEDOT:PSS, high‐rate metal‐free micro‐supercapacitor (MSC) arrays are successfully fabricated for direct high‐efficiency storage of high‐voltage pulse electricity. Within an area of 2.4 × 3.4 cm2 on various paper substrates, large‐scale MSC arrays (comprising up to 100 cells) can be printed to deliver a working voltage window of 160 V at an ultrahigh scan rate up to 30 V s−1. The ultrahigh rate capability enables the MSC arrays to quickly capture and efficiently store the high‐voltage (≈150 V) pulse electricity produced by a droplet‐based electricity generator at a high efficiency of 62%, significantly higher than that (<2%) of the batteries or capacitors demonstrated in the literature. Moreover, the compact and metal‐free features make these MSC arrays excellent candidates for sustainable high‐performance energy storage in self‐charging power systems.

Funder

European Commission

Swedish Foundation for International Cooperation in Research and Higher Education

Vetenskapsrådet

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3