Sleep Deprivation Triggers the Excessive Activation of Ovarian Primordial Follicles via β2 Adrenergic Receptor Signaling

Author:

Weng Lichun12ORCID,Hong Hanqing12,Zhang Qinyu12,Xiao Chengqi12,Zhang Qiuwan12,Wang Qian12,Huang Ju3,Lai Dongmei12ORCID

Affiliation:

1. The International Peace Maternity and Child Health Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200030 China

2. Shanghai Key Laboratory of Embryo Original Diseases Shanghai 200030 China

3. Songjiang Hospital and Songjiang Research Institute Shanghai Key Laboratory of Emotions and Affective Disorders Shanghai Jiao Tong University School of Medicine Shanghai 201600 China

Abstract

AbstractSleep deprivation (SD) is observed to adversely affect the reproductive health of women. However, its precise physiological mechanisms remain largely elusive. In this study, using a mouse model of SD, it is demonstrated that SD induces the depletion of ovarian primordial follicles, a phenomenon not attributed to immune‐mediated attacks or sympathetic nervous system activation. Rather, the excessive secretion of stress hormones, namely norepinephrine (NE) and epinephrine (E), by overactive adrenal glands, has emerged as a key mediator. The communication pathway mediated by the KIT ligand (KITL)‐KIT between granulosa cells and oocytes plays a pivotal role in primordial follicle activation. SD heightened the levels of NE/E that stimulates the activation of the KITL‐KIT/PI3K and mTOR signaling cascade in an β2 adrenergic receptor (ADRB2)‐dependent manner, thereby promoting primordial follicle activation and consequent primordial follicle loss in vivo. In vitro experiments further corroborate these observations, revealing that ADRB2 upregulates KITL expression in granulosa cells via the activation of the downstream cAMP/PKA pathway. Together, these results reveal the significant involvement of ADRB2 signaling in the depletion of ovarian primordial follicles under sleep‐deprived conditions. Additionally, ADRB2 antagonists are proposed for the treatment or prevention of excessive activation of primordial follicles induced by SD.

Funder

National Natural Science Foundation of China

Shanghai Jiao Tong University

Shanghai Municipal Health Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3