Affiliation:
1. School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030 China
2. State Key Laboratory of Systems Medicine for Cancer Shanghai Cancer Institute Ren Ji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
3. Institute of Medical Robotics Shanghai Jiao Tong University Shanghai 200240 China
4. Shanghai Key Laboratory of Gynecologic Oncology Ren Ji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
Abstract
AbstractMetabolic dysregulation is a key driver of cellular senescence, contributing to the progression of systemic aging. The heterogeneity of senescent cells and their metabolic shifts are complex and unexplored. A microfluidic SlipChip integrated with surface‐enhanced Raman spectroscopy (SERS), termed SlipChip‐SERS, is developed for single‐cell metabolism analysis. This SlipChip‐SERS enables compartmentalization of single cells, parallel delivery of saponin and nanoparticles to release intracellular metabolites and to realize SERS detection with simple slipping operations. Analysis of different cancer cell lines using SlipChip‐SERS demonstrated its capability for sensitive and multiplexed metabolic profiling of individual cells. When applied to human primary fibroblasts of different ages, it identified 12 differential metabolites, with spermine validated as a potent inducer of cellular senescence. Prolonged exposure to spermine can induce a classic senescence phenotype, such as increased senescence‐associated β‐glactosidase activity, elevated expression of senescence‐related genes and reduced LMNB1 levels. Additionally, the senescence‐inducing capacity of spermine in HUVECs and WRL‐68 cells is confirmed, and exogenous spermine treatment increased the accumulation and release of H2O2. Overall, a novel SlipChip‐SERS system is developed for single‐cell metabolic analysis, revealing spermine as a potential inducer of senescence across multiple cell types, which may offer new strategies for addressing ageing and ageing‐related diseases.
Funder
National Natural Science Foundation of China
Shanghai Jiao Tong University