Affiliation:
1. Department of Pharmacy the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei 230001 China
2. The CAS Key Laboratory of Innate Immunity and Chronic Disease School of Basic Medical Sciences Center for Advanced Interdisciplinary Science and Biomedicine of IHM Division of Life Sciences and Medicine University of Science and Technology of China Hefei 230027 China
3. Department of Radiation Oncology University of Texas Southwestern Medical Center Dallas 75230 USA
Abstract
AbstractIncreasing immunotherapy response rate and durability can lead to significant improvements in cancer care. To address this challenge, a novel multivalent immune checkpoint therapeutic platform is constructed through site‐specific ligation of anti‐PD‐L1 nanobody (Nb) on ferritin (Ftn) nanocage. Nb‐Ftn blocks PD‐1/PD‐L1 interaction and downregulates PD‐L1 levels via endocytosis‐induced degradation. In addition, the cage structure of Ftn allows encapsulation of indocyanine green (ICG), an FDA‐approved dye. Photothermal treatment with Nb‐Ftn@ICG induces immunogenic death of tumor cells, which improves systemic immune response via maturation of dendritic cells and enhanced infiltration of T cells. Moreover, Nb‐Ftn encapsulation significantly enhances cellular uptake, tumor accumulation and retention of ICG. In vivo assays showed that this nanoplatform ablates the primary tumor, suppresses abscopal tumors and inhibits tumor metastasis, leading to a prolonged survival rate. This work presents a novel strategy for improving cancer immunotherapy using multivalent nanobody‐ferritin conjugates as immunological targeting and enhancing carriers.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献