Crossbreeding Effect of Chalcogenation and Iodination on Benzene Additives Enables Optimized Morphology and 19.68% Efficiency of Organic Solar Cells

Author:

Zhou Tao1,Jin Wenwen1,Li Yinfeng1,Xu Xiaopeng1,Duan Yuwei2,Li Ruipeng3,Yu Liyang1,Peng Qiang12ORCID

Affiliation:

1. School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China

2. College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 P. R. China

3. National Synchrotron Light Source II Brookhaven National Lab Suffolk Upton NY 11973 USA

Abstract

AbstractVolatile solid additives have attracted increasing attention in optimizing the morphology and improving the performance of currently dominated non‐fullerene acceptor‐based organic solar cells (OSCs). However, the underlying principles governing the rational design of volatile solid additives remain elusive. Herein, a series of efficient volatile solid additives are successfully developed by the crossbreeding effect of chalcogenation and iodination for optimizing the morphology and improving the photovoltaic performances of OSCs. Five benzene derivatives of 1,4‐dimethoxybenzene (DOB), 1‐iodo‐4‐methoxybenzene (OIB), 1‐iodo‐4‐methylthiobenzene (SIB), 1,4‐dimethylthiobenzene (DSB) and 1,4‐diiodobenzene (DIB) are systematically studied, where the widely used DIB is used as the reference. The effect of chalcogenation and iodination on the overall property is comprehensively investigated, which indicates that the versatile functional groups provided various types of noncovalent interactions with the host materials for modulating the morphology. Among them, SIB with the combination of sulphuration and iodination enabled more appropriate interactions with the host blend, giving rise to a highly ordered molecular packing and more favorable morphology. As a result, the binary OSCs based on PM6:L8‐BO and PBTz‐F:L8‐BO as well as the ternary OSCs based on PBTz‐F:PM6:L8‐BO achieved impressive high PCEs of 18.87%, 18.81% and 19.68%, respectively, which are among the highest values for OSCs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3