High‐Throughput Electromechanical Coupling Chip Systems for Real‐Time 3D Invasion/Migration Assay of Cells

Author:

Jiang Nan1,Xu Liang2,Han Yiming1,Wang Shuyi1,Duan Xiaocen2,Dai Jingyao3,Hu Yunxing1,Liu Xiaozhi4,Liu Zhiqiang5,Huang Jianyong1ORCID

Affiliation:

1. Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced Technology College of Engineering Peking University Beijing 100871 P. R. China

2. Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 P. R. China

3. Department of Hepatobiliary Surgery Air Force Medical Center Beijing P. R. China 100142

4. Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants Fifth Central Hospital of Tianjin Tianjin 300450 P. R. China

5. Department of Physiology and Pathopgysiology School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 P. R. China

Abstract

AbstractCell invasion/migration through three‐dimensional (3D) tissues is not only essential for physiological/pathological processes, but a hallmark of cancer malignancy. However, how to quantify spatiotemporal dynamics of 3D cell migration/invasion is challenging. Here, this work reports a 3D cell invasion/migration assay (3D‐CIMA) based on electromechanical coupling chip systems, which can monitor spatiotemporal dynamics of 3D cell invasion/migration in a real‐time, label‐free, nondestructive, and high‐throughput way. In combination with 3D topological networks and complex impedance detection technology, this work shows that 3D‐CIMA can quantitively characterize collective invasion/migration dynamics of cancer cells in 3D extracellular matrix (ECM) with controllable biophysical/biomechanical properties. More importantly, this work further reveals that it has the capability to not only carry out quantitative evaluation of anti‐tumor drugs in 3D microenvironments that minimize the impact of cell culture dimensions, but also grade clinical cancer specimens. The proposed 3D‐CIMA offers a new quantitative methodology for investigating cell interactions with 3D extracellular microenvironments, which has potential applications in various fields like mechanobiology, drug screening, and even precision medicine.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3