Affiliation:
1. State Key Laboratory of Software Development Environment School of Computer Science Beihang University Beijing 100191 P. R. China
2. Zhongguancun Laboratory Beijing 100094 P. R. China
3. CAS Key Laboratory of Genome Sciences and Information Beijing Institute of Genomics Chinese Academy of Sciences and China National Center for Bioinformation Beijing 100101 China
4. School of Life Science University of Chinese Academy of Sciences Beijing 101408 P. R. China
Abstract
AbstractTopologically associating domains (TADs) are functional chromatin units with hierarchical structure. However, the existence, prevalence, and dynamics of such hierarchy in single cells remain unexplored. Here, a new generation TAD‐like domain (TLD) detection algorithm, named deDoc2, to decode the hierarchy of TLDs in single cells, is reported. With dynamic programming, deDoc2 seeks genome partitions with global minimal structure entropy for both whole and local contact matrix. Notably, deDoc2 outperforms state‐of‐the‐art tools and is one of only two tools able to identify the hierarchy of TLDs in single cells. By applying deDoc2, it is showed that the hierarchy of TLDs in single cells is highly dynamic during cell cycle, as well as among human brain cortex cells, and that it is associated with cellular identity and functions. Thus, the results demonstrate the abundance of information potentially encoded by TLD hierarchy for functional regulation. The deDoc2 can be freely accessed at https://github.com/zengguangjie/deDoc2.
Funder
Natural Science Foundation of Beijing Municipality
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献