Sandwich‐Structured Implants to Obstruct Multipath Energy Supply and Trigger Self‐Enhanced Hypoxia‐Initiated Chemotherapy Against Postsurgical Tumor Recurrence and Metastasis

Author:

Fang Youqiang1,Luo Xing1,Xu Yanteng1,Liu Zheng1,Mintz Rachel L.2,Yu Haiyang3,Yu Xuan14,Li Kai14,Ju Enguo1,Wang Haixia1,Tang Zhaohui3,Tao Yu15,Li Mingqiang15ORCID

Affiliation:

1. Laboratory of Biomaterials and Translational Medicine Center for Nanomedicine, Department of Urology The Third Affiliated Hospital, Sun Yat‐sen University Guangzhou 510630 P. R. China

2. Department of Biomedical Engineering Washington University in St. Louis St. Louis MO 63110 USA

3. Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China

4. Department of Ultrasound The Third Affiliated Hospital Sun Yat‐sen University Guangzhou 510630 P. R. China

5. Guangdong Provincial Key Laboratory of Liver Disease Research Guangzhou 510630 P. R. China

Abstract

AbstractAs a currently common strategy to treat cancer, surgical resection may cause tumor recurrence and metastasis due to residual postoperative tumors. Herein, an implantable sandwich‐structured dual‐drug depot is developed to trigger a self‐intensified starvation therapy and hypoxia‐induced chemotherapy sequentially. The two outer layers are 3D‐printed using a calcium‐crosslinked mixture ink containing soy protein isolate, polyvinyl alcohol, sodium alginate, and combretastatin A4 phosphate (CA4P). The inner layer is one patch of poly (lactic‐co‐glycolic acid)‐based electrospun fibers loaded with tirapazamine (TPZ). The preferentially released CA4P destroys the preexisting blood vessels and prevents neovascularization, which obstructs the external energy supply to cancer cells but aggravates hypoxic condition. The subsequently released TPZ is bioreduced to cytotoxic benzotriazinyl under hypoxia, further damaging DNA, generating reactive oxygen species, disrupting mitochondria, and downregulating hypoxia‐inducible factor 1α, vascular endothelial growth factor, and matrix metalloproteinase 9. Together these processes induce apoptosis, block the intracellular energy supply, counteract the disadvantage of CA4P in favoring intratumor angiogenesis, and suppress tumor metastasis. The in vivo and in vitro results and the transcriptome analysis demonstrate that the postsurgical adjuvant treatment with the dual‐drug‐loaded sandwich‐like implants efficiently inhibits tumor recurrence and metastasis, showing great potential for clinical translation.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Primary Health Care Foundation

China Postdoctoral Science Foundation

Guangdong Provincial Pearl River Talents Program

Natural Science Foundation of Guangdong Province

Recruitment Program of Global Experts

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3