Hollow Spherical Heterostructured FeCo‐P Catalysts Derived from MOF‐74 for Efficient Overall Water Splitting

Author:

Jiang Hualin1ORCID,Zhao Zhe1,Li Gang2,Wang Mengxue1,Chen Pinghua3ORCID,Liu Xiaotian2,Tu Xinman1,Hu Yitian1,Shen Zhen2,Wu Yirou1

Affiliation:

1. Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle National‐local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization Institute of Environmental and Chemical Engineering Nanchang Hangkong University Nanchang 330063 P. R. China

2. Power China Jiangxi Electric Power Construction Co. Ltd. Nanchang 330063 P. R. China

3. Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Institute of Environmental and Chemical Engineering Nanchang Hangkong University Nanchang 330063 P. R. China

Abstract

AbstractThe design of catalysts with tunable active sites in heterogeneous interface structures is crucial for addressing challenges in the water‐splitting process. Herein, a hollow spherical heterostructure FeCo‐P is successfully prepared by hydrothermal and phosphorization methods. This hollow structure, along with the heterogeneous interface between Co2P and FeP, not only facilitates the exposure of more active sites, but also increases the contact area between the catalyst and the electrolyte, as well as shortens the distance for mass/electron transfer. This enhancement promotes electron transfer to facilitate water decomposition. FeCo‐P exhibits excellent hydrogen evolution (HER) and oxygen evolution (OER) performance when reaching @ 10 mA cm−2 in 1 mol L−1 KOH, with overpotentials of 131/240 mV for HER/OER. Furthermore, when FeCo‐P is used as both the cathode and anode for overall water splitting (OWS), it only requires low voltages of 1.49, 1.55, and 1.57 V to achieve CDs of 10, 100, and 300 mA cm−2, respectively. Density functional theory calculations indicate that constructing a Co2P and FeP heterogeneous interface with good lattice matching can facilitate electron redistribution, thereby enhancing the electrocatalytic performance of OWS. This work opens up new possibilities for the rational design of efficient water electrolysis catalysts derived from MOFs.

Funder

National Natural Science Foundation of China

Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province

Natural Science Foundation of Jiangxi Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3