Lipid Nanoparticle‐Mediated Delivery of CRISPR‐Cas9 Against Rubicon Ameliorates NAFLD by Modulating CD36 Along with Glycerophospholipid Metabolism

Author:

Bai Yu1,Nan Yanyang1,Wu Tao1,Zhu An1,Xie Xinlei1,Sun Yun2,Deng Yong2,Dou Zihan1,Hu Xiaozhi1,Zhou Rongrui1,Xu Shuwen1,Zhang Yuanzhen1,Fan Jiajun134,Ju Dianwen13ORCID

Affiliation:

1. Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai P. R. China

2. Department of Research and Development Shanghai Proton and Heavy Ion Center Fudan University Cancer Hospital Shanghai 201321 P. R. China

3. Fudan Zhangjiang Institute Shanghai 201203 P. R. China

4. Shanghai Hailu Biological Technology Co., Ltd. Shanghai 201200 P. R. China

Abstract

AbstractNon‐alcoholic fatty liver disease (NAFLD) is a prominent cause of various chronic metabolic hepatic diseases with limited therapeutics. Rubicon, an essential regulator in lysosomal degradation, is reported to exacerbate hepatic steatosis in NAFLD mice and patients, indicating its probability of being a therapeutic target for NAFLD treatment. In this study, the therapeutic potential of Rubicon blockage is investigated. Lipid nanoparticles carrying Rubicon‐specific CRISPR‐Cas9 components exhibited liver accumulation, cell internalization, and Rubicon knockdown. A single administration of the nanoparticles results in attenuated lipid deposition and hepatic steatosis, with lower circulating lipid levels and decreased adipocyte size in NAFLD mice. Furthermore, the increase of phosphatidylcholine and phosphatidylethanolamine levels can be observed in the NAFLD mice livers after Rubicon silencing, along with regulatory effects on metabolism‐related genes such as CD36, Gpcpd1, Chka, and Lpin2. The results indicate that knockdown of Rubicon improves glycerophospholipid metabolism and thereby ameliorates the NAFLD progression, which provides a potential strategy for NAFLD therapy via the restoration of Rubicon.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shanghai Rising-Star Program

Shanghai Science and Technology Development Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3