Quasi‐Solid‐State Aluminum–Air Batteries with Ultra‐high Energy Density and Uniform Aluminum Stripping Behavior

Author:

Lv Chaonan1,Li Yixin1,Zhu Yuanxin1,Zhang Yuxin1,Kuang Jialin1,Zhao Qing2,Tang Yougen1,Wang Haiyan1ORCID

Affiliation:

1. Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China

2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 P. R. China

Abstract

AbstractAqueous aluminum–air batteries are attracting considerable attention with high theoretical capacity, low‐cost and high safety. However, lifespan and safety of the battery are still limited by the inevitable hydrogen evolution reaction on the metal aluminum anode and electrolyte leakage. Herein, for the first time, a clay‐based quasi‐solid‐state electrolyte is proposed to address such issues, which has excellent compatibility and a liquid‐like ionic conductivity. The clay with uniform pore channels facilitates aluminum ions uniform stripping and reduces the activity of free H2O molecules by reconstructing hydrogen bonds network, thus suppressing the self‐corrosion of aluminum anode. As a result, the fabricated aluminum–air battery achieves the highest energy density of 4.56 KWh kg−1 with liquid‐like operating voltage of 1.65 V and outstanding specific capacity of 2765 mAh g−1, superior to those reported aluminum–air batteries. The principle of constructing quasi‐solid‐state electrolyte using low‐cost clay may further promote the commercialization of aluminum–air batteries and provide a new insight into electrolyte design for aqueous energy storage system.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3