Affiliation:
1. Joint Disease & Sport Medicine Centre Department of Orthopaedics Xinqiao Hospital Army Medical University Chongqing 400038 China
2. School of Life Science Chongqing University Chongqing 400044 China
3. Department of Orthopaedics Ruian People's Hospital The Third Affiliated Hospital of Wenzhou Medical University Wenzhou 325016 China
Abstract
AbstractOwing to their mechanical resilience and non‐toxicity, titanium implants are widely applied as the major treatment modality for the clinical intervention against bone fractures. However, the intrinsic bioinertness of Ti and its alloys often impedes the effective osseointegration of the implants, leading to severe adverse complications including implant loosening, detachment, and secondary bone damage. Consequently, new Ti implant engineering strategies are urgently needed to improve their osseointegration after implantation. Remarkably, metalorganic frameworks (MOFs) are a class of novel synthetic material consisting of coordinated metal species and organic ligands, which have demonstrated a plethora of favorable properties for modulating the interfacial properties of Ti implants. This review comprehensively summarizes the recent progress in the development of MOF‐coated Ti implants and highlights their potential utility for modulating the bio‐implant interface to improve implant osseointegration, of which the discussions are outlined according to their physical traits, chemical composition, and drug delivery capacity. A perspective is also provided in this review regarding the current limitations and future opportunities of MOF‐coated Ti implants for orthopedic applications. The insights in this review may facilitate the rational design of more advanced Ti implants with enhanced therapeutic performance and safety.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献