Affiliation:
1. School of Marine Science and Engineering Hainan University Haikou 570228 P. R China
2. Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
3. School of Resources, Environment and Safety Engineering University of South China Hengyang Hunan 421001 P. R. China
Abstract
AbstractThe pursuit of efficient and durable bifunctional electrocatalysts for overall water splitting in acidic media is highly desirable, albeit challenging. SrIrO3 based perovskites are electrochemically active for oxygen evolution reaction (OER), however, their inert activities toward hydrogen evolution reaction (HER) severely restrict the practical implementation in overall water splitting. Herein, an Ir@SrIrO3 heterojunction is newly developed by a partial exsolution approach, ensuring strong metal‐support interaction for OER and HER. Notably, the Ir@SrIrO3‐175 electrocatalyst, prepared by annealing SrIrO3 in 5% H2 atmosphere at 175 °C, delivers ultralow overpotentials of 229 mV at 10 mA cm−2 for OER and 28 mV at 10 mA cm−2 for HER, surpassing most recently reported bifunctional electrocatalysts. Moreover, the water electrolyzer using the Ir@SrIrO3‐175 bifunctional electrocatalyst demonstrates the potential application prospect with high electrochemical performance and excellent durability in acidic environment. Theoretical calculations unveil that constructing Ir@SrIrO3 heterojunction regulates interfacial electronic redistribution, ultimately enabling low energy barriers for both OER and HER.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献