Affiliation:
1. Department of Biomedical Engineering University of Groningen University Medical Center Groningen A. Deusinglaan 1 Groningen, AV 9713 The Netherlands
2. W. J. Kolff Institute for Biomedical Engineering and Materials Science University of Groningen University Medical Center Groningen A. Deusinglaan 1 Groningen, AV 9713 The Netherlands
Abstract
AbstractLayered double hydroxides (LDHs) have been widely studied for biomedical applications due to their excellent properties, such as good biocompatibility, degradability, interlayer ion exchangeability, high loading capacity, pH‐responsive release, and large specific surface area. Furthermore, the flexibility in the structural composition and ease of surface modification of LDHs makes it possible to develop specifically functionalized LDHs to meet the needs of different applications. In this review, the recent advances of LDHs for biomedical applications, which include LDH‐based drug delivery systems, LDHs for cancer diagnosis and therapy, tissue engineering, coatings, functional membranes, and biosensors, are comprehensively discussed. From these various biomedical research fields, it can be seen that there is great potential and possibility for the use of LDHs in biomedical applications. However, at the same time, it must be recognized that the actual clinical translation of LDHs is still very limited. Therefore, the current limitations of related research on LDHs are discussed by combining limited examples of actual clinical translation with requirements for clinical translation of biomaterials. Finally, an outlook on future research related to LDHs is provided.
Funder
China Scholarship Council
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Facile preparation of a pH-sensitive biocompatible nanocarrier based on magnetic layered double hydroxides/Cu MOFs-chitosan crosslinked к-carrageenan for controlled doxorubicin delivery to breast cancer cells;Colloids and Surfaces B: Biointerfaces;2024-11
2. The role of graphene quantum dots in cutting‐edge medical therapies;Polymers for Advanced Technologies;2024-09
3. Layered double hydroxides-based DNA sensors for analytical detection;Microchemical Journal;2024-09
4. Nanohybrid-Based Redox Homeostasis Perturbators Escaped from Early Lysosomes toward Amplified Sensitization of Tumor Cells and Photothermally Maneuvered Pyroptosis Therapy;ACS Applied Materials & Interfaces;2024-08-06
5. Materials Containing Single‐, Di‐, Tri‐, and Multi‐Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications;Advanced Science;2024-07