Affiliation:
1. Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 China
2. School of Nano Science and Technology University of Chinese Academy of Sciences Beijing 100049 China
Abstract
AbstractRNA interference (RNAi) is a powerful tool for understanding and manipulating signaling pathways in plant science, potentially facilitating the accelerated development of novel plant traits and crop yield improvement. The common strategy for delivering siRNA into intact plants using agrobacterium or viruses is complicated and time‐consuming, limiting the application of RNAi in plant research. Here, a novel delivery method based on mesoporous silica nanoparticles (MSNs) is reported, which allows for the efficient delivery of siRNA into mature plant leaves via topical application without the aid of mechanical forces, achieving transient gene knockdown with up to 98% silencing efficiency at the molecular level. In addition, this method is nontoxic to plant leaves, enabling the repeated delivery of siRNA for long‐term silencing. White spots and yellowing phenotypes are observed after spraying the MSN‐siRNA complex targeted at phytoene desaturase and magnesium chelatase genes. After high light treatment, photobleaching phenotypes are also observed by spraying MSNs‐siRNA targeted at genes into the Photosystem II repair cycle. Furthermore, the study demonstrated that MSNs can simultaneously silence multiple genes. The results suggest that MSN‐mediated siRNA delivery is an effective tool for long‐term multi‐gene silencing, with great potential for application in plant functional genomic analyses and crop improvement.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献