Skin‐Interfaced Bifluidic Paper‐Based Device for Quantitative Sweat Analysis

Author:

Deng Muhan1,Li Xiaofeng1,Song Kui2,Yang Hanlin1,Wei Wenkui1,Duan Xiaojun3,Ouyang Xiaoping1,Cheng Huanyu4ORCID,Wang Xiufeng1ORCID

Affiliation:

1. School of Materials Science and Engineering Xiangtan University Xiangtan Hunan 411105 China

2. Department of Engineering Science and Mechanics Xiangtan University Xiangtan Hunan 411105 China

3. Hunan Provincial Children's Hospital Changsha Hunan 410000 China

4. Department of Engineering Science and Mechanics The Pennsylvania State University University Park PA 16802 USA

Abstract

AbstractThe erratic, intermittent, and unpredictable nature of sweat production, resulting from physiological or psychological fluctuations, poses intricacies to consistently and accurately sample and evaluate sweat biomarkers. Skin‐interfaced microfluidic devices that rely on colorimetric mechanisms for semi‐quantitative detection are particularly susceptible to these inaccuracies due to variations in sweat secretion rate or instantaneous volume. This work introduces a skin‐interfaced colorimetric bifluidic sweat device with two synchronous channels to quantify sweat rate and biomarkers in real‐time, even during uncertain sweat activities. In the proposed bifluidic‐distance metric approach, with one channel to measure sweat rate and quantify collected sweat volume, the other channel can provide an accurate analysis of the biomarkers based on the collected sweat volume. The closed channel design also reduces evaporation and resists contamination from the external environment. The feasibility of the device is highlighted in a proof‐of‐the‐concept demonstration to analyze sweat chloride for evaluating hydration status and sweat glucose for assessing glucose levels. The low‐cost yet highly accurate device provides opportunities for clinical sweat analysis and disease screening in remote and low‐resource settings. The developed device platform can be facilely adapted for the other biomarkers when corresponding colorimetric reagents are exploited.

Funder

Education Department of Hunan Province

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

National Institutes of Health

National Science Foundation

Pennsylvania State University

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3