Liver‐Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti‐Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration

Author:

Gu Hao1ORCID,Zhu Yuhui1,Yang Jiawei1,Jiang Ruixue1,Deng Yuwei1,Li Anshuo1,Fang Yingjing1,Wu Qianju2,Tu Honghuan3,Chang Haishuang4,Wen Jin1ORCID,Jiang Xinquan1

Affiliation:

1. Department of Prosthodontics Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine College of Stomatology Shanghai Jiao Tong University National Center for Stomatology National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology Shanghai Research Institute of Stomatology Shanghai Engineering Research Center of Advanced Dental Technology and Materials Shanghai 200125 China

2. Stomatological Hospital of Xiamen Medical College Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment Xiamen Fujian 361008 China

3. State Key Laboratory of Advanced Optical Communication Systems and Networks School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China

4. Shanghai Institute of Precision Medicine Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200125 China

Abstract

AbstractTissue regeneration is regulated by morphological clues of implants in bone defect repair. Engineered morphology can boost regenerative biocascades that conquer challenges such as material bioinertness and pathological microenvironments. Herein, a correlation between the liver extracellular skeleton morphology and the regenerative signaling, namely hepatocyte growth factor receptor (MET), is found to explain the mystery of rapid liver regeneration. Inspired by this unique structure, a biomimetic morphology is prepared on polyetherketoneketone (PEKK) via femtosecond laser etching and sulfonation. The morphology reproduces MET signaling in macrophages, causing positive immunoregulation and optimized osteogenesis. Moreover, the morphological clue activates an anti‐inflammatory reserve (arginase‐2) to translocate retrogradely from mitochondria to the cytoplasm due to the difference in spatial binding of heat shock protein 70. This translocation enhances oxidative respiration and complex II activity, reprogramming the metabolism of energy and arginine. The importance of MET signaling and arginase‐2 in the anti‐inflammatory repair of biomimetic scaffolds is also verified via chemical inhibition and gene knockout. Altogether, this study not only provides a novel biomimetic scaffold for osteoporotic bone defect repair that can simulate regenerative signals, but also reveals the significance and feasibility of strategies to mobilize anti‐inflammatory reserves in bone regeneration.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3