Tuning Thermal Conductivity of Hybrid Perovskites through Halide Alloying

Author:

Wang Guang1,Fan Hongzhao1,Chen Zhongwei2,Gao Yufei3,Wang Zuankai4,Li Zhigang1,Lu Haipeng2ORCID,Zhou Yanguang1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China

2. Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China

3. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education School of Energy and Power Engineering Dalian University of Technology Dalian 116024 China

4. Department of Mechanical Engineering The Hong Kong Polytechnic University Dalian Hong Kong SAR China

Abstract

AbstractTuning the thermal transport properties of hybrid halide perovskites is critical for their applications in optoelectronics, thermoelectrics, and photovoltaics. Here, an effective strategy is demonstrated to modulate the thermal transport property of hybrid perovskites by halide alloying. A highly tunable thermal conductivity of mixed‐halide hybrid perovskites is achieved due to halide‐alloying and structural distortion. The experimental measurements show that the room temperature thermal conductivity of MAPb(BrxI1‐x)3 (x = 0─1) can be largely modulated from 0.27 ± 0.07 W m−1 K−1 (x = 0.5) to 0.47 ± 0.09 W m−1 K−1 (x = 1). Molecular dynamics simulations further demonstrate that the thermal conductivity reduction of hybrid halide perovskites results from the suppression of the mean free paths of the low‐frequency acoustic and optical phonons. It is found that halide alloying and the induced structural distortion can largely increase the scatterings of optical and acoustic phonons, respectively. The confined diffusion of MA+ cations in the octahedra cage is found to act as an additional thermal transport channel in hybrid perovskites and can contribute around 10–20% of the total thermal conductivity. The findings provide a strategy for tailoring the thermal transport in hybrid halide perovskites, which may largely benefit their related applications.

Funder

State Key Laboratory of Clean Energy Utilization

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3