Photo‐Electro‐Thermal Textiles for Scalable, High‐Performance, and Salt‐Resistant Solar‐Driven Desalination

Author:

Xu Duo123,Ge Can13,Chen Ze2,Zhang Zhixun2,Zhang Qian2,Chen Tao2,Gao Chong2,Xu Weilin2,Fang Jian13ORCID

Affiliation:

1. College of Textile and Clothing Engineering Soochow University Suzhou 215123 China

2. State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan 430200 China

3. National Engineering Laboratory for Modern Silk Soochow University Suzhou 215123 China

Abstract

AbstractSolar‐driven interfacial evaporation is an emerging desalination technology that can potentially relieve the freshwater scarcity issue. To obtain high and continuous evaporation rates for all‐weather, chemically engineered structural materials have been widely explored for simultaneous photothermal and electrothermal conversion. However, many previously reported fabrication processes involve poor integration and considerable energy loss. Herein, a scalable photo‐electro‐thermal textile is proposed to enable high efficiency, long‐term salt rejection, and solar‐driven desalination. Specifically, the photo‐electro‐thermal yarns with a core (commercial electric wire)‐shell (polypyrrole‐decorated Tencel) structure realize the integration of electrothermal and photothermal conversion. The wrapping eccentricity of 1.53 mm and pitch of 3 T cm−1 for the electric wire are rationally regulated to achieve a high surface temperature of over 52 °C at a 3 V DC input. As a result, exceptional and stable evaporation rates of 5.57 kg m−2 h−1 (pure water) and 4.89 kg m−2 h−1 (3.5 wt.% brine) under 1 kW m−2·radiation with a 3 V input voltage are realized. Practical application shows that the textiles can achieve high water collection of over 46 kg m−2 d−1 over the whole day of operation. The constructed photo‐electro‐thermal textile‐based evaporator provides an effective method for commercial and scalable photo‐electro‐thermal conversion to achieve high‐performance and salt‐resistant solar‐driven desalination.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Hubei Province

Science and Technology Program of Hubei Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3