Autophagy‐Activated Self‐reporting Photosensitizer Promoting Cell Mortality in Cancer Starvation Therapy

Author:

Zhang Ruoyao1ORCID,Zhang Chen1,Chen Chao2,Tian Minggang3,Chau Joe H. C.2,Li Zhao1,Yang Yuanzhan1,Li Xiaoqiong1,Tang Ben Zhong4

Affiliation:

1. School of Medical Technology Institute of Engineering Medicine School of Life Science Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals Beijing Institute of Technology Beijing 100081 P. R. China

2. Department of Chemical and Biological Engineering and Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong P. R. China

3. School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China

4. School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 P. R. China

Abstract

AbstractCancer starvation therapy have received continuous attention as an efficient method to fight against wide‐spectrum cancer. However, during cancer starvation therapy, the protective autophagy promotes cancer cells survival, compromising the therapeutic effect. Herein, a novel strategy by combination of autophagy‐activated fluorescent photosensitizers (PSs) and cancer starvation therapy to realize the controllable and efficient ablation of tumor is conceived. Two dual‐emissive self‐reporting aggregation‐induced emission luminogens (AIEgens), TPAQ and TPAP, with autophagy‐activated reactive oxygen species (ROS) generation are prepared to fight against the protective autophagy in cancer starvation therapy. When protective autophagy occurs, a portion of TPAQ and TPAP will translocate from lipid droplets to acidic lysosomes with significant redshift in fluorescence emission and enhanced ROS generation ability. The accumulation of ROS induced by TPAQ‐H and TPAP‐H causes lysosomal membrane permeabilization (LMP), which further results in cell apoptosis and promotes cell death. In addition, TPAQ and TPAP can enable the real‐time self‐reporting to cell autophagy and cell death process by observing the change of red‐emissive fluorescence signals. Particularly, the efficient ablation of tumor via the combination of cancer starvation therapy and photodynamic therapy (PDT) induced by TPAQ has been successfully confirmed in 3D tumor spheroid chip, suggesting the validation of this strategy.

Funder

National Natural Science Foundation of China

Beijing Institute of Technology Research Fund Program for Young Scholars

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3