Affiliation:
1. Department of Biomedical Engineering School of Control Science and Engineering Shandong University, Jinan Shandong 250061 China
Abstract
AbstractAssessing changes in protein–protein binding affinity due to mutations helps understanding a wide range of crucial biological processes within cells. Despite significant efforts to create accurate computational models, predicting how mutations affect affinity remains challenging due to the complexity of the biological mechanisms involved. In the present work, a geometric deep learning framework called MuToN is introduced for quantifying protein binding affinity change upon residue mutations. The method, designed with geometric attention networks, is mechanism‐aware. It captures changes in the protein binding interfaces of mutated complexes and assesses the allosteric effects of amino acids. Experimental results highlight MuToN's superiority compared to existing methods. Additionally, MuToN's flexibility and effectiveness are illustrated by its precise predictions of binding affinity changes between SARS‐CoV‐2 variants and the ACE2 complex.
Funder
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities