Embedded Hybrid‐Dimensional Heterointerface for Filament Modulation in 2D Material‐Based Artificial Nociceptor

Author:

Huang Chang‐Hsun1,Cheng Te‐Yu2,Wu Chia‐Yi1,Chen Kuan‐Hung1,Wu Tian‐Li3,Chou Yi‐Chia1ORCID

Affiliation:

1. Department of Materials Science and Engineering National Taiwan University Taipei 10617 Taiwan

2. Institute of Physics National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan

3. International College of Semiconductor Technology National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan

Abstract

AbstractNociceptors are key sensory receptors that transmit warning signals to the central nervous system in response to painful stimuli. This fundamental process is emulated in an electronic device by developing a novel artificial nociceptor with an ultrathin, nonstoichiometric gallium oxide (GaOx)‐silicon oxide heterostructure. A large‐area 2D‐GaOx film is printed on a substrate through liquid metal printing to facilitate the production of conductive filaments. This nociceptive structure exhibits a unique short‐term temporal response following stimulation, enabling a facile demonstration of threshold‐switching physics. The developed heterointerface 2D‐GaOx film enables the fabrication of fast‐switching, low‐energy, and compliance‐free 2D‐GaOx nociceptors, as confirmed through experiments. The accumulation and extrusion of Ag in the oxide matrix are significant for inducing plastic changes in artificial biological sensors. High‐resolution transmission electron microscopy and electron energy loss spectroscopy demonstrate that Ag clusters in the material dispersed under electrical bias and regrouped spontaneously when the bias is removed owing to interfacial energy minimization. Moreover, 2D nociceptors are stable; thus, heterointerface engineering can enable effective control of charge transfer in 2D heterostructural devices. Furthermore, the diffusive 2D‐GaOx device and its Ag dynamics enable the direct emulation of biological nociceptors, marking an advancement in the hardware implementation of artificial human sensory systems.

Funder

National Taiwan University

Ministry of Education

National Science and Technology Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3