Totally Caged Type I Pro‐Photosensitizer for Oxygen‐Independent Synergistic Phototherapy of Hypoxic Tumors

Author:

Zeng Qin12,Li Xipeng1,Li Jiajun1,Shi Mengting1,Yao Yufen3,Guo Lei3,Zhi Na1,Zhang Tao14ORCID

Affiliation:

1. MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China

2. The Seventh Affiliated Hospital Southern Medical University Foshan Guangdong 528244 China

3. School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China

4. Guangzhou Key Laboratory of Spectral Analysis and Functional Probes College of Biophotonics South China Normal University Guangzhou 510631 China

Abstract

AbstractActivatable type I photosensitizers are an effective way to overcome the insufficiency and imprecision of photodynamic therapy in the treatment of hypoxic tumors, however, the incompletely inhibited photoactivity of pro‐photosensitizer and the limited oxidative phototoxicity of post‐photosensitizer are major limitations. It is still a great challenge to address these issues using a single and facile design. Herein, a series of totally caged type I pro‐photosensitizers (Pro‐I‐PSs) are rationally developed that are only activated in tumor hypoxic environment and combine two oxygen‐independent therapeutic mechanisms under single‐pulse laser irradiation to enhance the phototherapeutic efficacy. Specifically, five benzophenothiazine‐based dyes modified with different nitroaromatic groups, BPN 1−5, are designed and explored as latent hypoxia‐activatable Pro‐I‐PSs. By comparing their optical responses to nitroreductase (NTR), it is identified that the 2‐methoxy‐4‐nitrophenyl decorated dye (BPN 2) is the optimal Pro‐I‐PSs, which can achieve NTR‐activated background‐free fluorescence/photoacoustic dual‐modality tumor imaging. Furthermore, upon activation, BPN 2 can simultaneously produce an oxygen‐independent photoacoustic cavitation effect and a photodynamic type I process at single‐pulse laser irradiation. Detailed studies in vitro and in vivo indicated that BPN 2 can effectively induce cancer cell apoptosis through synergistic effects. This study provides promising potential for overcoming the pitfalls of hypoxic‐tumor photodynamic therapy.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3