Asymmetrically Functionalized Electron‐Deficient π‐Conjugated System for Printed Single‐Crystalline Organic Electronics

Author:

Yu Craig P.1ORCID,Kumagai Shohei2ORCID,Tsutsumi Michitsuna1,Kurosawa Tadanori1ORCID,Ishii Hiroyuki3ORCID,Watanabe Go4ORCID,Hashizume Daisuke5ORCID,Sugiura Hiroki6,Tani Yukio6,Ise Toshihiro6,Watanabe Tetsuya6,Sato Hiroyasu7,Takeya Jun18,Okamoto Toshihiro92ORCID

Affiliation:

1. Material Innovation Research Center (MIRC) and Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5‐1‐5 Kashiwanoha Kashiwa Chiba 277‐8561 Japan

2. Department of Chemical Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 4259‐G1‐7 Nagatsuta Midori‐ku Yokohama 226‐8502 Japan

3. Department of Applied Physics Faculty of Pure and Applied Sciences University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8573 Japan

4. Department of Physics School of Science Kitasato University 1‐15‐1 Kitasato, Minami‐ku Sagamihara Kanagawa 252‐0373 Japan

5. RIKEN Center for Emergent Matter Science (CEMS) 2‐1 Hirosawa Wako Saitama 351‐0198 Japan

6. FUJIFILM Corp. 577 Ushijima, Kaisei‐machi Ashigarakami‐gun Kanagawa 258‐8577 Japan

7. Rigaku Corp. 3‐9‐12 Matsubara‐cho Akishima Tokyo 196‐8666 Japan

8. International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba 205‐0044 Japan

9. PRESTO, JST 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan

Abstract

AbstractLarge‐area single‐crystalline thin films of n‐type organic semiconductors (OSCs) fabricated via solution‐processed techniques are urgently demanded for high‐end electronics. However, the lack of molecular designs that concomitantly offer excellent charge‐carrier transport, solution‐processability, and chemical/thermal robustness for n‐type OSCs limits the understanding of fundamental charge‐transport properties and impedes the realization of large‐area electronics. The benzo[de]isoquinolino[1,8‐gh]quinolinetetracarboxylic diimide (BQQDI) π‐electron system with phenethyl substituents (PhC2–BQQDI) demonstrates high electron mobility and robustness but its strong aggregation results in unsatisfactory solubility and solution‐processability. In this work, an asymmetric molecular design approach is reported that harnesses the favorable charge transport of PhC2–BQQDI, while introducing alkyl chains to improve the solubility and solution‐processability. An effective synthetic strategy is developed to obtain the target asymmetric BQQDI (PhC2–BQQDI–Cn). Interestingly, linear alkyl chains of PhC2–BQQDI–Cn (n = 5–7) exhibit an unusual molecular mimicry geometry with a gauche conformation and resilience to dynamic disorders. Asymmetric PhC2–BQQDI–C5 demonstrates excellent electron mobility and centimeter‐scale continuous single‐crystalline thin films, which are two orders of magnitude larger than that of PhC2–BQQDI, allowing for the investigation of electron transport anisotropy and applicable electronics.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3