Selective Translation of Maternal mRNA by eIF4E1B Controls Oocyte to Embryo Transition

Author:

Guo Jing1ORCID,Zhao Hailian23,Zhang Jue1,Lv Xiangjiang4,Zhang Shen1,Su Ruibao23,Zheng Wei1,Dai Jing14,Meng Fei1,Gong Fei14,Lu Guangxiu14,Xue Yuanchao23,Lin Ge14

Affiliation:

1. Clinical Research Center for Reproduction and Genetics in Hunan Province Reproductive and Genetic Hospital of CITIC‐Xiangya Changsha 410078 P. R. China

2. Key Laboratory of RNA Biology Institute of Biophysics Chinese Academy of Sciences Beijing 100101 P. R. China

3. University of Chinese Academy of Sciences Beijing 100049 P. R. China

4. Laboratory of Reproductive and Stem Cell Engineering NHC Key Laboratory of Human Stem Cell and Reproductive Engineering Central South University Changsha 410078 P. R. China

Abstract

AbstractMaternal messenger ribonucleic acids (mRNAs) are driven by a highly orchestrated scheme of recruitment to polysomes and translational activation. However, selecting and regulating individual mRNAs for the translation from a competitive pool of mRNAs are little‐known processes. This research shows that the maternal eukaryotic translation initiation factor 4e1b (Eif4e1b) expresses during the oocyte‐to‐embryo transition (OET), and maternal deletion of Eif4e1b leads to multiple defects concerning oogenesis and embryonic developmental competence during OET. The linear amplification of complementary deoxyribonucleic acid (cDNA) ends, and sequencing (LACE‐seq) is used to identify the distinct subset of mRNA and its CG‐rich binding sites within the 5′ untranslated region (UTR) targeted by eIF4E1B. The proteomics analyses indicate that eIF4E1B‐specific bound genes show stronger downregulation at the protein level, which further verify a group of proteins that plays a crucial role in oocyte maturation and embryonic developmental competence is insufficiently synthesized in Eif4e1b‐cKO oocytes during OET. Moreover, the biochemical results in vitro are combined to further confirm the maternal‐specific translation activation model assembled by eIF4E1B and 3′UTR‐associated mRNA binding proteins. The findings demonstrate the indispensability of eIF4E1B for selective translation activation in mammalian oocytes and provide a potential network regulated by eIF4E1B in OET.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3