Engineering Bifunctional Calcium Alendronate Gene‐Delivery Nanoneedle for Synergistic Chemo/Immuno‐Therapy Against HER2 Positive Ovarian Cancer

Author:

Chen Guochuang1,Zeng Leli2,Bi Bo2,Huang Xiuyu2,Qiu Miaojuan2,Chen Ping1,Chen Zhi‐Ying1,He Yulong2,Pan Yihang2,Chen Yu3,Zhao Jing2ORCID

Affiliation:

1. Syno Minicircle Biotechnology Shenzhen 518055 P. R. China

2. Precision Medicine Center Scientific Research Center The Seventh Affiliated Hospital of Sun Yat‐sen University Shenzhen 518107 P. R. China

3. Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China

Abstract

AbstractOvarian cancer is the most lethal gynecological malignancy. Most patients are diagnosed at an advanced stage with widespread peritoneal dissemination and ascites. Bispecific T‐cell engagers (BiTEs) have demonstrated impressive antitumor efficacy in hematological malignancies, but the clinical potency is limited by their short half‐life, inconvenient continuous intravenous infusion, and severe toxicity at relevant therapeutic levels in solid tumors. To address these critical issues, the design and engineering of alendronate calcium (CaALN) based gene‐delivery system is reported to express therapeutic level of BiTE (HER2×CD3) for efficient ovarian cancer immunotherapy. Controllable construction of CaALN nanosphere and nanoneedle is achieved by the simple and green coordination reactions that the distinct nanoneedle‐like alendronate calcium (CaALN‐N) with a high aspect ratio enabled efficient gene delivery to the peritoneum without system in vivo toxicity. Especially, CaALN‐N induced apoptosis of SKOV3‐luc cell via down‐regulation of HER2 signaling pathway and synergized with HER2×CD3 to generate high antitumor response. In vivo administration of CaALN‐N/minicircle DNA encoding HER2×CD3 (MC‐HER2×CD3) produces sustained therapeutic levels of BiTE and suppresses tumor growth in a human ovarian cancer xenograft model. Collectively, the engineered alendronate calcium nanoneedle represents a bifunctional gene delivery platform for the efficient and synergistic treatment of ovarian cancer.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Planning Project of Shenzhen Municipality

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3