High‐Entropy Catalysis Accelerating Stepwise Sulfur Redox Reactions for Lithium–Sulfur Batteries

Author:

Xu Yunhan1,Yuan Wenchuang2,Geng Chuannan1,Hu Zhonghao1,Li Qiang1,Zhao Yufei1,Zhang Xu2,Zhou Zhen2,Yang Chunpeng1,Yang Quan‐Hong1

Affiliation:

1. Nanoyang Group Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China

2. Interdisciplinary Research Center for Sustainable Energy Science and Engineering School of Chemical Engineering Zhengzhou University Zhengzhou 450001 China

Abstract

AbstractCatalysis is crucial to improve redox kinetics in lithium–sulfur (Li–S) batteries. However, conventional catalysts that consist of a single metal element are incapable of accelerating stepwise sulfur redox reactions which involve 16‐electron transfer and multiple Li2Sn (n = 2–8) intermediate species. To enable fast kinetics of Li–S batteries, it is proposed to use high‐entropy alloy (HEA) nanocatalysts, which are demonstrated effective to adsorb lithium polysulfides and accelerate their redox kinetics. The incorporation of multiple elements (Co, Ni, Fe, Pd, and V) within HEAs greatly enhances the catalytically active sites, which not only improves the rate capability, but also elevates the cycling stability of the assembled batteries. Consequently, HEA‐catalyzed Li–S batteries achieve a high capacity up to 1364 mAh g−1 at 0.1 C and experience only a slight capacity fading rate of 0.054% per cycle over 1000 cycles at 2 C, while the assembled pouch cell achieves a high specific capacity of 1192 mAh g−1. The superior performance of Li–S batteries demonstrates the effectiveness of the HEA catalysts with maximized synergistic effect for accelerating S conversion reactions, which opens a way to catalytically improving stepwise electrochemical conversion reactions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3