Human Fibroblast‐Derived Matrix Hydrogel Accelerates Regenerative Wound Remodeling Through the Interactions with Macrophages

Author:

Savitri Cininta1,Ha Sang Su1,Kwon Jae Won12,Kim Sung Hoon1,Kim Young‐Min12,Park Hyun Mee3,Kwon Haejin3,Ji Mi Jung3,Park Kwideok12ORCID

Affiliation:

1. Center for Biomaterials Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea

2. Division of Bio‐Medical Science and Technology, KIST School University of Science and Technology (UST) Seoul 02792 Republic of Korea

3. Advanced Analysis and Data Center KIST Seoul 02792 Republic of Korea

Abstract

AbstractHerein, a novel extracellular matrix (ECM) hydrogel is proposed fabricated solely from decellularized, human fibroblast‐derived matrix (FDM) toward advanced wound healing. This FDM‐gel is physically very stable and viscoelastic, while preserving the natural ECM diversity and various bioactive factors. Subcutaneously transplanted FDM‐gel provided a permissive environment for innate immune cells infiltration. Compared to collagen hydrogel, excellent wound healing indications of FDM‐gel treated in the full‐thickness wounds are noticed, particularly hair follicle formation via highly upregulated β‐catenin. Sequential analysis of the regenerated wound tissues disclosed that FDM‐gel significantly alleviated pro‐inflammatory cytokine and promoted M2‐like macrophages, along with significantly elevated vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) level. A mechanistic study demonstrated that macrophages‐FDM interactions through cell surface integrins α5β1 and α1β1 resulted in significant production of VEGF and bFGF, increased Akt phosphorylation, and upregulated matrix metalloproteinase‐9 activity. Interestingly, blocking such interactions using specific inhibitors (ATN161 for α5β1 and obtustatin for α1β1) negatively affected those pro‐healing growth factors secretion. Macrophages depletion animal model significantly attenuated the healing effect of FDM‐gel. This study demonstrates that the FDM‐gel is an excellent immunomodulatory material that is permissive for host cells infiltration, resorbable with time, and interactive with macrophages, where it thus enables regenerative matrix remodeling toward a complete wound healing.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3