Ultrasound‐Responsive Oxygen‐Carrying Pollen for Enhancing Chemo‐Sonodynamic Therapy of Breast Cancer

Author:

Wen Baojie1ORCID,Huang Danqing1,Song Chuanhui1,Shan Jingyang1,Zhao Yuanjin12ORCID

Affiliation:

1. Department of Ultrasound Institute of Translational Medicine Nanjing Drum Tower Hospital Affiliated Hospital of Medicine School Nanjing University Nanjing 210008 China

2. State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China

Abstract

AbstractThe tumor‐suppressing efficacy of either chemotherapeutics or gaseous drugs has been confirmed in treating the triple negative breast cancer (TNBC), while the efficacy of single treatment is usually dissatisfactory. Herein, a novel ultrasound responsive natural pollen delivery system is presented to simultaneously load chemotherapeutics and gaseous drugs for synergistic treatment of TNBC. The hollow structure of pollen grains carries oxygen‐enriched perfluorocarbon (PFC), and the porous spinous process structure adsorbs the chemotherapeutic drug doxorubicin (DOX) (PO/D‐PGs). Ultrasound can trigger the oxygen release from PFC and excite DOX, which is not only a chemotherapeutic but also a sonosensitizer, to realize chemo‐sonodynamic therapy. The PO/D‐PGs are demonstrated to effectively enhance oxygen concentration and increase the production of reactive oxygen species in the presence of low‐intensity ultrasound, synergistically enhancing the tumor killing ability. Thus, the synergistic therapy based on ultrasound‐facilitated PO/D‐PGs significantly enhances the antitumor effect in the mouse TNBC model. It is believed that the proposed natural pollen cross‐state microcarrier can be used as an effective strategy to enhance chemo‐sonodynamic therapy for TNBC.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Nanjing Medical Science and Technique Development Foundation

Shenzhen Fundamental Research Program

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3