Mechanically Robust Lubricating Hydrogels Beyond the Natural Cartilage as Compliant Artificial Joint Coating

Author:

Zhao Weiyi12,Zhang Yunlei1,Zhao Xiaoduo13,Sheng Wenbo1,Ma Shuanhong13ORCID,Zhou Feng1

Affiliation:

1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

3. Shandong Laboratory of Advanced Materials and Green Manufacture at Yantai Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Yantai 264006 China

Abstract

AbstractNatural cartilage exhibits superior lubricity as well as an ultra‐long service lifetime, which is related to its surface hydration, load‐bearing, and deformation recovery feature. Until now, it is of great challenge to develop reliable cartilage lubricating materials or coatings with persistent robustness. Inspired by the unique biochemical structure and mechanics of natural cartilage, the study reports a novel cartilage‐hydrogel composed of top composite lubrication layer and bottom mechanical load‐bearing layer, by covalently manufacturing thick polyelectrolyte brush phase through sub‐surface of tough hydrogel matrix with multi‐level crystallization phase. Due to multiple network dissipation mechanisms of matrix, this hydrogel can achieve a high compression modulus of 11.8 MPa, a reversible creep recovery (creep strain: ≈2%), along with excellent anti‐swelling feature in physiological medium (v/v0 < 5%). Using low‐viscosity PBS as lubricant, this hydrogel demonstrates persistent lubricity (average COF: ≈0.027) under a high contact pressure of 2.06 MPa with encountering 100k reciprocating sliding cycles, negligible wear and a deformation recovery of collapse pit in testing area. The extraordinary lubrication performance of this hydrogel is comparable to but beyond the natural animal cartilage, and can be used as compliant coating for implantable articular material of UHMWPE to present, offering more robust lubricity than current commercial system.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3