Significant Unconventional Anomalous Hall Effect in Heavy Metal/Antiferromagnetic Insulator Heterostructures

Author:

Liang Yuhan1ORCID,Wu Liang2ORCID,Dai Minyi3,Zhang Yujun4,Zhang Qinghua5,Wang Jie5,Zhang Nian67,Xu Wei4,Le Zhao 8,Chen Hetian1,Ma Ji2,Wu Jialu1,Cao Yanwei910,Yi Di1,Ma Jing1,Jiang Wanjun8,Hu Jia‐Mian3,Nan Ce‐Wen1,Lin Yuan‐Hua1

Affiliation:

1. School of Materials Science and Engineering Tsinghua University Beijing 100084 China

2. Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming Yunnan 650093 China

3. Department of Materials Science and Engineering University of Wisconsin‐Madison Madison WI 53706 USA

4. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

5. Institute of Physics Chinese Academy of Sciences Beijing 100049 China

6. State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China

7. CAS Center for Excellence in Superconducting Electronics (CENSE) Chinese Academy of Sciences Shanghai 200050 China

8. Department of Physics Tsinghua University Beijing 10084 China

9. Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo Zhejiang 315021 China

10. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractThe anomalous Hall effect (AHE) is a quantum coherent transport phenomenon that conventionally vanishes at elevated temperatures because of thermal dephasing. Therefore, it is puzzling that the AHE can survive in heavy metal (HM)/antiferromagnetic (AFM) insulator (AFMI) heterostructures at high temperatures yet disappears at low temperatures. In this paper, an unconventional high‐temperature AHE in HM/AFMI is observed only around the Néel temperature of AFM, with large anomalous Hall resistivity up to 40 nΩ cm is reported. This mechanism is attributed to the emergence of a noncollinear AFM spin texture with a non‐zero net topological charge. Atomistic spin dynamics simulation shows that such a unique spin texture can be stabilized by the subtle interplay among the collinear AFM exchange coupling, interfacial Dyzaloshinski–Moriya interaction, thermal fluctuation, and bias magnetic field.

Funder

National Natural Science Foundation of China

National Science Foundation

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3