Affiliation:
1. Univ Rennes CNRS ISCR‐UMR 6226 Rennes F‐35000 France
2. Laboratory for Chemistry of Novel Materials University of Mons Mons B‐7000 Belgium
3. Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS‐Université de Strasbourg 23 rue du Loess, BP 43, Cedex 2 Strasbourg 67034 France
4. Univ Rennes CNRS IETR‐UMR 6164 Rennes F‐35000 France
Abstract
AbstractSince the first applications of nanohoops in organic electronics appear promising, the time has come to go deeper into their rational design in order to reach high‐efficiency materials. To do so, systematic studies dealing with the incorporation of electron‐rich and/or electron‐poor functional units on nanohoops have to be performed. Herein, the synthesis, the electrochemical, photophysical, thermal, and structural properties of two [4]cyclo‐2,7‐carbazoles, [4]C‐Py‐Cbz, and [4]C‐Pm‐Cbz, possessing electron‐withdrawing units on their nitrogen atoms (pyridine or pyrimidine) are reported. The synthesis of these nanohoops is first optimized and a high yield above 50% is reached. Through a structure‐properties relationship study, it is shown that the substituent has a significant impact on some physicochemical properties (eg HOMO/LUMO levels) while others are kept unchanged (eg fluorescence). Incorporation in electronic devices shows that the most electrically efficient Organic Field‐Effect transistors are obtained with [4]C‐Py‐Cbz although this compound does not present the best‐organized semiconductor layer. These experimental data are finally confronted with the electronic couplings between the nanohoops determined at the DFT level and have highlighted the origin in the difference of charge transport properties. [4]C‐Py‐Cbz has the advantage of a more 2D‐like transport character than [4]C‐Pm‐Cbz, which alleviates the impact of defects and structural organization.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献